Friday, January 19, 2018

On Random Weights for Texture Generation in One Layer Neural Networks

Continuing up on the use of random projections (which in the context of DNNs is really about NN with random weights), today we have:

Recent work in the literature has shown experimentally that one can use the lower layers of a trained convolutional neural network (CNN) to model natural textures. More interestingly, it has also been experimentally shown that only one layer with random filters can also model textures although with less variability. In this paper we ask the question as to why one layer CNNs with random filters are so effective in generating textures? We theoretically show that one layer convolutional architectures (without a non-linearity) paired with the an energy function used in previous literature, can in fact preserve and modulate frequency coefficients in a manner so that random weights and pretrained weights will generate the same type of images. Based on the results of this analysis we question whether similar properties hold in the case where one uses one convolution layer with a non-linearity. We show that in the case of ReLu non-linearity there are situations where only one input will give the minimum possible energy whereas in the case of no nonlinearity, there are always infinite solutions that will give the minimum possible energy. Thus we can show that in certain situations adding a ReLu non-linearity generates less variable images.

Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments: