Monday, January 22, 2018

Quantized Compressive Sensing with RIP Matrices: The Benefit of Dithering

Quantized Compressive Sensing with RIP Matrices: The Benefit of Dithering by Chunlei Xu, Laurent Jacques

In Compressive Sensing theory and its applications, quantization of signal measurements, as integrated into any realistic sensing model, impacts the quality of signal reconstruction. In fact, there even exist incompatible combinations of quantization functions (e.g., the 1-bit sign function) and sensing matrices (e.g., Bernoulli) that cannot lead to an arbitrarily low reconstruction error when the number of observations increases.
This work shows that, for a scalar and uniform quantization, provided that a uniform random vector, or "random dithering", is added to the compressive measurements of a low-complexity signal (e.g., a sparse or compressible signal, or a low-rank matrix) before quantization, a large class of random matrix constructions known to respect the restricted isometry property (RIP) are made "compatible" with this quantizer. This compatibility is demonstrated by the existence of (at least) one signal reconstruction method, the "projected back projection" (PBP), whose reconstruction error is proved to decay when the number of quantized measurements increases.
Despite the simplicity of PBP, which amounts to projecting the back projection of the compressive observations (obtained from their multiplication by the adjoint sensing matrix) onto the low-complexity set containing the observed signal, we also prove that given a RIP matrix and for a single realization of the dithering, this reconstruction error decay is also achievable uniformly for the sensing of all signals in the considered low-complexity set.
We finally confirm empirically these observations in several sensing contexts involving sparse signals, low-rank matrices, and compressible signals, with various RIP matrix constructions such as sub-Gaussian random matrices and random partial Discrete Cosine Transform (DCT) matrices.

Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments: